5331 private links
For the first time, astronomers have mapped the surface of a pulsar in detail. And the result challenges our textbook picture of a pulsar’s appearance. //
From its perch on the exterior of the International Space Station, the Neutron star Interior Composition Explorer, or NICER, looks for X-rays from extreme astronomical objects, such as pulsars //
Pulsars, like black holes, are extremely dense but extremely small objects. Their immense gravity bends space-time around them, giving us a glimpse at the far side of the pulsar, even as they rotate out of view. The effect also makes the pulsar appear slightly larger than its actual size. Because NICER can clock the arrival of X-rays from the pulsar with extreme precision (better than 100 nanoseconds ), the researchers were able to build a map of the star’s surface and measure its size with unprecedented accuracy.
The teams determined that the neutron star is between 1.3 and 1.4 times the mass of the Sun. And it is roughly 16 miles (26 kilometers) wide. (By contrast, our Sun stretches just over 864,000 miles [1.3 million km] across.) //
J0030’s is oriented with its northern hemisphere pointed toward Earth. So, the teams expected to see a hotspot near the north pole. Mapping the hotspots required supercomputer modeling to disentangle where the X-rays NICER received from the pulsar originated on the star’s surface. The task would have taken normal desktop computers about a decade to complete, but the supercomputers finished in less than a month. //
What the teams found presented a different picture: J0030 has two or three hotspots, all in the southern hemisphere. The University of Amsterdam team believes the pulsar has one small, circular spot and one thin, crescent-shaped spot spinning around its lower latitudes. The University of Maryland team found the X-rays could alternatively be coming from two oval spots in the southern hemisphere, as well as one cooler spot close to the star’s south pole.
Neither result is the simple picture astronomers expected, indicating that the pulsar’s magnetic field, which causes the hotspots, is likely even more complex than originally assumed. While the result certainly leaves astronomers wondering, “It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?” NICER science lead and study co-author Zaven Arzoumanian said in a press release.