5333 private links
Oxygen is the most common oxidizing gas and is, of course, highly reactive. When dealing with an oxygen-enriched environment, it is important to control the sources of ignition. Ignition can be caused by many things, among them:
Electrical arcs, which can come from electrical equipment or even static discharge
Friction, which can be generated by the sliding contact of materials within the oxygen-enriched environment
Impact of particles or projectiles internal or external to the enriched environment can generate heat
Resonance, which is vibration-induced heating
Heat of compression is the most common cause of explosion due to contamination. Heating is caused by the adiabatic compression of a fluid; this is often called autoignition.
Autoignition is the phenomenon of spontaneous ignition of a fuel source due to the heat generated by the sudden compression of a gas or HoC. When a valve in a high-pressure or high-velocity oxygen flow is opened or closed quickly, the kinetic energy is converted to increased temperature and potential energy in the form of increased pressure. If the temperature generated by the compression exceeds the temperature needed to ignite non-metallic seals or even the pipe itself, the result is a spontaneously explosion or autoignition. When this happens in oxygen systems, the effect can be devastating.
Because the HoC is substantial and can generate thousands of degrees of temperature even at moderate pressure ratios, oxygen systems are designed to limit the pressure drops to control HoC and limit temperature within the autoignition temperatures of the system components.
Thus, it is absolutely essential that contaminants, which can introduce lower auto-ignition temperatures than even the non-metallic seats and seals, be removed from any oxygen system. Any method that achieves the desired cleanliness level is acceptable. CGA 4.4 and the recently issued MSS-SP-138 provide excellent recommendations for cleaning processes.