5333 private links
Expanding the technology is the fastest way to slash greenhouse gas emissions and decarbonize the economy.
April 6, 2019
Beyond decarbonizing today’s electric grid, we must use clean electricity to replace fossil fuels in transportation, industry and heating. We must provide for the fast-growing energy needs of poorer countries and extend the grid to a billion people who now lack electricity. And still more electricity will be needed to remove excess carbon dioxide from the atmosphere by midcentury.
Where will this gargantuan amount of carbon-free energy come from? The popular answer is renewables alone, but this is a fantasy. Wind and solar power are becoming cheaper, but they are not available around the clock, rain or shine, and batteries that could power entire cities for days or weeks show no sign of materializing any time soon. Today, renewables work only with fossil-fuel backup.
Germany, which went all-in for renewables, has seen little reduction in carbon emissions, and, according to our calculations, at Germany’s rate of adding clean energy relative to gross domestic product, it would take the world more than a century to decarbonize, even if the country wasn’t also retiring nuclear plants early. //
But we actually have proven models for rapid decarbonization with economic and energy growth: France and Sweden. They decarbonized their grids decades ago and now emit less than a tenth of the world average of carbon dioxide per kilowatt-hour. They remain among the world’s most pleasant places to live and enjoy much cheaper electricity than Germany to boot.
They did this with nuclear power. And they did it fast, taking advantage of nuclear power’s intense concentration of energy per pound of fuel. France replaced almost all of its fossil-fueled electricity with nuclear power nationwide in just 15 years; Sweden, in about 20 years. In fact, most of the fastest additions of clean electricity historically are countries rolling out nuclear power.
New nuclear power plants are hugely expensive to build in the United States today. This is why so few are being built. But they don’t need to be so costly. The key to recovering our lost ability to build affordable nuclear plants is standardization and repetition. The first product off any assembly line is expensive — it cost more than $150 million to develop the first iPhone — but costs plunge as they are built in quantity and production kinks are worked out.
Yet as a former chairman of the Nuclear Regulatory Commission put it, while France has two types of reactors and hundreds of types of cheese, in the United States it’s the other way around. In recent decades, the United States and some European countries have created ever more complicated reactors, with ever more safety features in response to public fears. New, one-of-a-kind designs, shifting regulations, supply-chain and construction snafus and a lost generation of experts (during the decades when new construction stopped) have driven costs to absurd heights. //
These economic problems are solvable. China and South Korea can build reactors at one-sixth the current cost in the United States. //
dozens of American start-ups are developing “fourth generation” reactors that can be mass-produced, potentially generating electricity at lower cost than fossil fuels. If American activists, politicians and regulators allow it, these reactors could be exported to the world in the 2030s and ’40s, slaking poorer countries’ growing thirst for energy while creating well-paying American jobs. //
Currently, as M.I.T.’s Richard Lester, a nuclear engineer, has written, a company proposing a new reactor design faces “the prospect of having to spend a billion dollars or more on an open-ended, all‑or‑nothing licensing process without any certainty of outcomes.” We need government on the side of this clean-energy transformation, with supportive regulation, streamlined approval, investment in research and incentives that tilt producers and consumers away from carbon.
All this, however, depends on overcoming an irrational dread among the public and many activists. The reality is that nuclear power is the safest form of energy humanity has ever used. Mining accidents, hydroelectric dam failures, natural gas explosions and oil train crashes all kill people, sometimes in large numbers, and smoke from coal-burning kills them in enormous numbers, more than half a million per year.
By contrast, in 60 years of nuclear power, only three accidents have raised public alarm: Three Mile Island in 1979, which killed no one; Fukushima in 2011, which killed no one (many deaths resulted from the tsunami and some from a panicked evacuation near the plant); and Chernobyl in 1986, the result of extraordinary Soviet bungling, which killed 31 in the accident and perhaps several thousand from cancer, around the same number killed by coal emissions every day. (Even if we accepted recent claims that Soviet and international authorities covered up tens of thousands of Chernobyl deaths, the death toll from 60 years of nuclear power would still equal about one month of coal-related deaths.) //
Nuclear waste is compact — America’s total from 60 years would fit in a Walmart — and is safely stored in concrete casks and pools, becoming less radioactive over time. After we have solved the more pressing challenge of climate change, we can either burn the waste as fuel in new types of reactors or bury it deep underground. It’s a far easier environmental challenge than the world’s enormous coal waste, routinely dumped near poor communities and often laden with toxic arsenic, mercury and lead that can last forever.